Initial vegetative growth of coffee plants submitted to foliar spraying of Paclobutrazol

Authors

  • Lucialdo Oliveira d’Arêde Professor do Instituto Federal de Educação, Ciência e Tecnologia do Amazonas (IFAM)
  • Sylvana Naomi Matsumoto Universidade Estadual do Sudoeste da Bahia
  • Jerffson Lucas Santos UESB, PROGRAMA DE PÓS GRADUAÇÃO EM AGRONOMIA
  • Anselmo Eloy Silveira Viana UESB/DEPARTAMENTO DE FITOTECNIA E ZOOTECNIA
  • Paula Acássia Silva Ramos CAPES/PROGRAMA DE PÓS GRADUAÇÃO EM AGRONOMIA DA UESB

DOI:

https://doi.org/10.25186/cs.v12i4.1311

Keywords:

Coffea arabica, growth retardants, triazole

Abstract

The objective of this study was evaluate the initial vegetative growth of plants cv. CatuaíVermelho IAC 144 submitted to foliar spraying of four solutions concentrations (250, 500, 750 and 1000 mg L-1) of pacloblutrazol (PBZ) and a control. The plants were cultivated in a greenhouse, in a randomized blocks experimental design, with five treatments and four replicates, evaluated at 120 days after PBZ application. The data were subjected to general and regression analysis of variance. All of morphological characteristics were affected by PBZ, with growth reduction of the coffee crown and lifting the root dry weight in comparison to the control plants. PBZ results in elevation of the SPAD index, xylem water potential, net photosynthesis rate and carboxylation efficiency of coffee plants. Net photosynthesis rate was affected by carboxylation efficiency, and transpiration was associated with greater water availability. The PBZ changes the relationship between the shoot and root growth, increasing the growth of roots and optimizes the relations of leaf gas exchange, due to elevation of plant water status.PBZ effects in morphological characteristics in initial growth of coffee plants are more evident in comparison to physiological alterations.

Author Biographies

Lucialdo Oliveira d’Arêde, Professor do Instituto Federal de Educação, Ciência e Tecnologia do Amazonas (IFAM)

Professor do Instituto Federal de Educação, Ciência e Tecnologia do Amazonas (IFAM), graduado em Engenharia Agronômica e Mestre em Fitotecnia pela Universidade Estadual do Sudoeste da Bahia (UESB). Atuando na área de Fisiologia de Plantas Cultivadas, principalmente nos seguintes temas: fitorreguladores, arborização em cafezais e ecofisiologia vegetal.

Sylvana Naomi Matsumoto, Universidade Estadual do Sudoeste da Bahia

Possui graduação em Engenharia Agronômica pela Universidade de São Paulo (1985), mestrado em Agronomia (Horticultura) pela Universidade Estadual Paulista Júlio de Mesquita Filho (1988) e doutorado em Ciências Agrárias (Fisiologia Vegetal) pela Universidade Federal de Viçosa (1999). Atualmente é professor adjunto da Universidade Estadual do Sudoeste da Bahia. Tem experiência na área de Agronomia, com ênfase em Fisiologia de Plantas Cultivadas, atuando principalmente nos seguintes temas: arborização em cafezais e ecofisiologia vegetal

Jerffson Lucas Santos, UESB, PROGRAMA DE PÓS GRADUAÇÃO EM AGRONOMIA

Graduado em Engenharia Agronômica (2012), Mestre (2014) e Doutorando (2014-2017) em Agronomia, área de Concentração Fitotecnia, pela Universidade Estadual do Sudoeste da Bahia-UESB. Formado em Técnico em Agropecuária pela Escola Agrotécnica Federal de Salinas-MG, (2006). Foi bolsista de iniciação científica pela Fundação de Amparo à Pesquisa do Estado da Bahia-FAPESB por 2 anos e 1 ano bolsista PIBIC/CNPq. Atualmente é Bolsista pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Tem experiência na área de agronomia, com ênfase em fisiologia vegetal, produção e tecnologia de sementes, manejo do cafeeiro e fruticultura. 

Anselmo Eloy Silveira Viana, UESB/DEPARTAMENTO DE FITOTECNIA E ZOOTECNIA

possui graduação em Engenharia Agronômica pela Universidade Federal da Paraíba (1984), especialização em Experimentação Agropecuária pela UNESP - Universidade Estadual Paulista Júlio de Mesquita Filho (1989), mestrado em Fitotecnia (Produção Vegetal) pela Universidade Federal de Viçosa (1995) e doutorado em Fitotecnia (Produção Vegetal) pela Universidade Federal de Viçosa (1999). Atualmente é professor titular da Universidade Estadual do Sudoeste da Bahia. Tem experiência na área de Agronomia, com ênfase em Manejo e Tratos Culturais, atuando principalmente nos seguintes temas: fitotecnia, tratos culturais, mandioca e planejamento experimental. cafeeiro e fruticultura. 

 

Paula Acássia Silva Ramos, CAPES/PROGRAMA DE PÓS GRADUAÇÃO EM AGRONOMIA DA UESB

Possui graduação em Engenharia Agronômica pela Universidade Estadual do Sudoeste da Bahia (2004) e Mestrado em Fitotecnia (Produção Vegetal) pela Universidade Federal de Viçosa (2006) e Doutorado em Fitotecnia (Pós-colheita) pela Universidade Federal de Viçosa (2011). Pós-doutorado em Plantas Ornamentais pela UFV (CAPES). Bolsista PNPD UESB, professora colaboradora do Programa de Pós-graduação em Agronomia. Tem experiência na área de Fisiologia Pós-colheita e Agronomia, com ênfase em Produção de grandes culturas, Pós-Colheita de Frutas e Hortaliça e Plantas ornamentais, atuando principalmente nos seguintes temas: enzimas, açucares, amido, ambiente modificado, hidroponia, alface, pitaya, mamão,salsinha, batata, batata-doce,urucum,mandioca.

References

ABU-MURIEFAH, S. S. Effects of paclobutrazol on growth and physiological attributes of soybean (Glycine max) plants grown under water stress conditions. International Journal of Advanced Research in Biological Sciences, Coimbatore, v.2, n.7, p. 81-93, 2015.

ATKIN, O. K. et al. Phenotypic plasticity and growth temperature: understanding interespecific variability. Journal of Experimental Botany, v. 57, n. 2, p. 267-281, 2007. https://www.researchgate.net/profile/Beth_Loveys/publication/7400391_Phenotypic_plasticity_and_growth_temperature_Understanding_interspecific_variability/links/5729552a08ae2efbfdb7f358.pdf

BABU, M. et al. Transpiration and Photosynthesis as affected by triazoles in mulberry (Morus alba L.). Indian Journal of Advances in Chemical Science, [S.l.], v.2, n.4, 2014. http://www.ijacskros.com/artcles/IJACS-M109.pdf

CRIADO, M. V. et al. Cytokinin induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). Journal of Plant Physiology, Jena, v. 166, n. 16, p. 1775-1785, 2009. https://www.researchgate.net/profile/Irma_N_Roberts/publication/26305405_Cytokinin-induced_changes_of_nitrogen_remobilization_and_chloroplast_ultrastructure_in_wheat_(Triticum_aestivum)/links/02e7e53397ad60f3a9000000.pdf

DaMATTA, F. M. Exploring drought tolerance in caffee: a physiological approach with some insights for plant breeding. Brazilian Journal Plant Physiology, Campos de Goytacazes, v. 16, p. 1-6, 2004. http://www.scielo.br/pdf/bjpp/v16n1/a01v16n1.pdf

DANIEL, G. et al. Effect of foliar application of mepiquat chloride and ethephon on floral bud induction and crop yield in robusta coffee. Journal of Coffee Research, Chickmagalur, v.36, n.1/2, p.60-63, 2008.

DIAS, P. C. et al. Morphological and physiological responses of two coffee progenies to soil water availability, Journal of Plant Physiology, [S.l.], v.164, p. 1639-1647, 2007. https://www.researchgate.net/profile/Fabio_Damatta2/publication/6512833_Morphological_and_physiological_responses_of_two_coffee_progenies_to_soil_water_availability/links/0912f505c956aa7325000000.pdf

FERNÁNDEZ, J.A. et al. Induction of drought tolerance by paclobutrazol and irrigation deficit in Phillyrea angustifolia during the nursery period. Scientia Horticulturae, [S.l.], v. 107, n.3, p. 277-283, 2006. https://www.researchgate.net/profile/Sebastian_Banon/publication/223732051_Induction_of_drought_tolerance_by_paclobutrazol_and_irrigation_deficit_in_Phillyrea_angustifolia_during_the_nursery_period/links/544e3da20cf26dda088e9bc7.pdf

FIGUEIRÔA, J. M.; BARBOSA, D. C. A.; SIMABUKURO, E. A. Crescimento de plantas jovens de Myracrodruon urundeuva Allemão (Anacardiaceae) sob diferentes regimes hídricos. Acta Botanica Brasilica, São Paulo, v.18, p.573-580, 2004. http://agris.fao.org/agris-search/search.do?recordID=XS2010100433

HARMATH, J. et al. Influence of some growth retardants on growth, transpiration rate and CO2 fixation of Caryopteris incana ‘Heavenly Blue’. Folia Oecologica, Zvolen, v. 41, n. 1, p. 24-33, 2014. http://www.savzv.sk/domain/b6/files/foc/foe_41_no1.pdf#page=24

HONORATO JÚNIOR, J. et al. Photosynthetic and antioxidative alterations in coffee leaves caused by epoxiconazole and pyraclostrobin sprays and Hemileia vastatrix infection. Pesticide Biochemistry and Physiology, [S.l.], v. 123, p.31-39, 2015. http://s3.amazonaws.com/academia.edu.documents/39003003/1-s2.0-S0048357515000280-main.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=14

JALEEL, C. A. et al. Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; impacts on ajmalicine accumulation. Colloids and Surfaces B: Biointerfaces, Amsterdam, v. 62, n. 1, p. 105-111, 2008.

JESUS, R. B. Os recursos naturais e sua exploração na formação territorial do município de Vitória da Conquista-BA. Enciclopédia Biosfera, Goiânia, v.6, n.9, p. 1-13, 2010. http://www.conhecer.org.br/enciclop/2010/os%20recursos.pdf

KISHOREKUMAR, A. et al. Comparative effects of different triazole compounds on growth, photosynthetic pigments and carbohydrate metabolism of Solenostemon rotundifolius. Colloids and Surfaces B: Biointerfaces, Amsterdam, v.6, n.2, p. 207-212, 2007.

LATIMER, J. G. Drought, paclobutrazol, abscisic acid, and gibberellic acid as alternatives to daminozide in tomato transplant production. Journal of the American Society for Horticultural Science, [S.l.], v.117, n.2, p.243-247, 1992. http://journal.ashspublications.org/content/117/2/243.full.pdf

LOLAEI, A. et al. Role of paclobutrazol on vegetative and sexual growth of plants. International Journal of Agricultural Crop Science, [S.l.], v.5, n. 9, p. 958-961, 2013. http://pakacademicsearch.com/pdf-files/agr/70/958-961%20vol%205,issue%209,%202013.pdf

MARSHALL, J. G.; DUMBROFF, E. B. Turgor regulation via cell wall adjustment in white spruce. Plant Physiology, [S.l.], v. 119, p. 313-319, 1999. http://www.plantphysiol.org/content/119/1/313.full

MAURI, R. Interação entre parâmetros hidráulicos e fotossintéticos em Coffea spp. 2015. 32f. Dissertação (mestrado). Universidade Federal de Viçosa, Viçosa. http://locus.ufv.br/bitstream/handle/123456789/6775/texto%20completo.pdf?sequence=1&isAllowed=y

MATSOUKIS, A.; GASPARATOS, D.; CHRONOPOULOU-SERELIN, A. Environmental conditions and drenched-applied paclobutrazol effects on lantana

specific leaf area and N, P, K, and Mg content. Chilean Journal of Agricultural Research, v. 74, n.1, p. 117-122, 2014. http://www.scielo.cl/scielo.php?pid=S0718-58392014000100018&script=sci_arttext

MOHAN, R. et al. Exploring possibilities of induction of water stress tolerance in mulberry in rainfed condition by application of paclobutrazol. Journal of Global Biosciences, Washim, v.4, n.9, p. 3301-3310, 2015. http://www.mutagens.co.in/jgb/vol.04/9/040903.pdf

MULLINS, M. G.; BOUQUET, A.; WILLIAMS, L. E. Biology of grapevine. Cambridge: Cambridge University Press, 1992. 239 p.

NARDINI, A.; ÕUNAPUU-PIKAS, E.; SAVI, T. When smaller is better: leaf hydraulic conductance and drought vulnerability correlate to leaf size and venation density across four Coffea arabica genotypes. Functional Plant Biology, Layton South, v.41, n.9, p.972-982, 2014.

NAVARRO, A. et al. The influence of mycorrhizal inoculation and paclobutrazol on water and nutritional status of Arbutus unedo L. Environmental and Experimental Botany, [S.l.], v. 66, n. 3, p. 362-371, 2009. https://www.researchgate.net/profile/A_Navarro/publication/223913441_The_influence_of_mycorrhizal_inoculation_and_paclobutrazol_on_water_and_nutritional_status_of_Arbutus_unedo_L._Environ_Exp_Bot/links/0f31752f3ada30c872000000.pdf

OCHOA, J. et al. Distribution in plant, substrate and leachate of paclobutrazol following application to containerized Nerium oleander L. seedlings. Spanish Journal of Agricultural Research, Madrid, v 73, n.3, p. 621-628, 2009. http://repositorio.upct.es/bitstream/handle/10317/1424/dps.pdf?sequence=1&isAllowed=y

OLSON, M. E.; ROSELL, J. A. Vessel diameter-stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytologist, New Jersey, v.197, n.4, p.1204-1213, 2013. http://onlinelibrary.wiley.com/doi/10.1111/nph.12097/full

POMPELLI, M. F. et al. Leaf anatomy, ultrastructure and plasticity of Coffea arabica L. in response to light and nitrogen. Biotemas, Florianópolis, v.25, n.4, p. 13-28, 2012. https://periodicos.ufsc.br/index.php/biotemas/article/viewFile/2175-7925.2012v25n4p13/23206

PRICINOTTO, L. F.; ZUCARELI, C. Paclobutrazol no crescimento e desempenho produtivo da soja sob diferentes densidades de semeadura. Revista Caatinga, Mossoró, v. 27, n. 4, p. 65-74, 2014. http://200.137.6.4/revistas/index.php/sistema/article/download/3026/pdf_172

RADEMACHER, W. Plant growth regulators: backgrounds and uses in plant production. Journal of Plant Growth Regulation, [S.l.], v. 34, p. 845-872, 2015.

ROSELI, A. N. M.; YING, T. F.; RAMLAN, N. F. Morphological and physiological response to Syzygium myrtifolium Walp. to paclobutrazol. Sains Malays, [S.l.], v. 41, n. 10, p. 1187-1192, 2012. http://www.ukm.my/jsm/pdf_files/SM-PDF-41-10-2012/02%20Ahmad%20Nazarudin.pdf

SAMPAIO, D. B.; DOS SANTOS, V. B.; ARAÚJO, A. S. F. Rates of paclobutrazol on soil microbial biomass. Semina: Ciências Agrárias, Londrina, v.3, p.1349-1353, 2010. http://www.redalyc.org/pdf/4457/445744099027.pdf

SCHOLANDER, P. F. et al. Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 52, n. 1, p. 119, 1964. http://www.pnas.org/content/52/1/119.short

SHANMUGAPRIYA, A. K.; SIVAKUMAR, T.; PANNEERSELVAM, R. Difeconazole and tricyclazole induced changes in photosynthetic pigments of Lycopersicum esculentum L. International Journal of Agriculture and Food Science, Delhi, v. 3, n.2, p. 72-75, 2013. http://urpjournals.com/tocjnls/7_13v3i2_9.pdf

SRIVASTAVA et al. Plant biorregulators for sustainable agriculture: integrating redox signaling as a possible unifying mechanism. Advances in Agronomy, Newark, v. 137, P. 237-278, 2016.

TEKALIGN, T. Growth, photosynthetic efficiency, rate of transpiration, lodging, and grain yield of tef (Eragrostis tef (Zucc.) Trotter) as influenced by stage and rate of paclobutrazol application. East African Journal of Science, [S.l.], v.1, n.1, p.35-44, 2007. http://www.haramayajournals.org/index.php/ej/article/view/19/14

WANDERLEY, C. S.; REZENDE, R.; ANDRADE, C. A. B. Efeito de paclobutrazol como regulador de crescimento e produção de flores de girassol em cultivo hidropônico. Ciência e Agrotecnologia, Lavras, v. 31, n. 6, p. 1672-1678, 2007. http://www.scielo.br/pdf/cagro/v31n6/a11v31n6

ZHU, L. H.; VAN DE PEPPEL, A.; LI, X. Y.; WELANDER, M. Changes of leaf water potential and endogenous cytokinins in young apple trees treated with or without paclobutrazol under drought conditions. Scientia Horticulturae, [S.l.], v.99, n.2, p.133-141, 2004.

Published

2017-11-28

How to Cite

D’ARÊDE, L. O.; MATSUMOTO, S. N.; SANTOS, J. L.; VIANA, A. E. S.; RAMOS, P. A. S. Initial vegetative growth of coffee plants submitted to foliar spraying of Paclobutrazol. Coffee Science - ISSN 1984-3909, v. 12, n. 4, p. 451 - 462, 28 Nov. 2017.

Issue

Section

Articles