Effect of temperature and cytokinin on thr capacity of direct somatic embryogenesis in Coffea arabica L. genotypes
DOI:
https://doi.org/10.25186/cs.v9i3.668Keywords:
Arabica hybrid, somatic embryo, 6-benzyladenine, 2-isopenteniladeninaAbstract
The vegetative multiplication of Coffea arabica hybrids can be carried out by direct somatic embryogenesis. The objective of this study was to verify if temperature and cytokinins could influence the capacity for direct somatic embryogeneis in arabica genotypes. For this purpose foliar explants taken from adult plants of three C. arabica genotypes, hybrids 812 and 956 and cultivar Catuaí, were inoculated into a culture medium with ½ MS salts, 20.0 g l-1 sucrose and 30 μM 6-benzyladenine (6-BA) or 10 μM 2-isopenteniladenina (2-iP) and submitted to temperatures of 25 and 30 ºC in the absence of light. The treatments were evaluated with respect to the number of somatic embryos formed per foliar explant, at 270 days after the beginning of the experiment. A completely random experimental design was adopted with a 3 x 2 x 2 (genotype x temperature x plant growth regulator) factorial scheme, with ten replications per treatment and two explants in each. Temperature of 30 oC favored significantly the formation of somatic embryos when compared to 25 oC and this response pattern predominated amongst the three genotypes. On the other hand, 6-BA and 2-iso-pentenladenine caused similar answers for the majority of genotypes. The results of this study showed that temperature has a significant influence on the direct somatic embryogenesis capacity of C. arabica genotypes.
References
REFERENCES
ALMEIDA, J.A.S.; SILVAROLLA, M.B. Induction of somatic embryos of Coffea arabica genotypes by 6-benzyladenine. International Journal of Plant Developmental Biology, Japan, v. 3, n. 1, p. 5-9, 2009.
ALMEIDA, J.A.S. et al. Embriogênese somática em genótipos de Coffea arabica L. Coffee Science, Lavras, v. 3, n. 2, p. 143-151, 2008.
ALMEIDA, J.A.S., CARMAZINI, V.C.B.; RAMOS, L.C.S. Indirect effect of agar concentration on the embryogenesis responses of Coffea canephora. Fruit, Vegetable and Cereal Science and Biotecnology, Japan, v. 1, p. 121-125, 2007.
AHMAD, M.S.A.; JAVED, F.; ASHRAF, M. Iso-osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two indica rice (Oryza sativa L.) genotypes. Plant Growth Regulation, Dordrecht, v. 53, P. 53-63, 2007.
BARBÓN, R.; JIMÉNEZ, E.; PREIL, W. Influence of in vitro environment on somatic embryogenesis of Coffea arabica L cv Caturra rojo: the effects of carbon dioxide on embryogenic cell suspe nsions. Plant Cell Tissue and Organ Culture, Dordrecht, v. 95, n. 2, p. 155-161, 2008.
BERTRAND, B. et al. Performance of Coffea arabica F1 hybrids in agroforestry and full-sun cropping systems in comparison with American pure line cultivars. Euphytica, Dordrecht, v. 181, p. 147-158, 2011.
CALIC-DRAGOSAVAC, D.; STEVOVIC, S.; ZDRAVKOVIC-KORAC, S. Impact of genotype, age of tree and environmental temperature on androgenesis induction of Aesculus hippocastanum L. African Journal of Biotechnology, Africa, v. 9, n. 26, p. 4042-4049, 2010. Disponível em: http://www.academicjournals.org/AJB. Acesso em: 28 ago. 2013.
CID, L.P.B.; CRUZ, A.R.R. Somatic embryogenesis from three coffee cultivars: ´Rubi`, Catuaí Vermelho 81 and IAPAR 59. HortScience, Alexandria, v. 39, n. 1, p. 130-131, 2004.
CIRIDHAR, P. et al. Influence of triacontanol on somatic embryogenesis in Coffea arabica L. and Coffea canephora P. ex Fr. In Vitro Cellular Developmental Biology Plant, New York, v. 40, n. 2, p. 200-203, 2004a.
DE-LA-PENA, C.; GALAZ-AVALOS, R.M.; LOYOLA-VARGAS, V.M. Possible role of light and polyamines in the onset of somatic embryogenesis of Coffea canephora. Molecular Biotechnology, Dordrecht, v. 39, n. 3, p. 215-224, 2008.
FEHÉR, A. The initiation phase of somatic embryogenesis: what we know and what we don’t. Acta Biologica Szegediensis, Hungary, v. 52, n. 1, p. 53-56, 2008. Disponível em: http://www.sci.u-szeged.hu/ABS. Acesso em: 15 set. 2013.
FERRIE, A.M.R.; KELLER, W.A. Optimization of methods for using polyethylene glycol as a non-permeating osmoticum for the induction of microspore embryogenesis in the Brassicacea. In Vitro Cellular & Developmental Biology Plant, Berlim, v. 43, n. 4, p. 348-355, 2007.
GAJ, M.D. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regulation, Dordrecht, v. 43, p. 27-47, 2004.
GATICA-ARIAS, A.M.; ARRIETA-ESPINOZA, G.; ESPINOZA-ESQUIVEL, A.M. Plant regeneration via indirect somatic embryogenesis and optimization of genetic transformation in Coffea arabica L. cvs. Caturra and Catuaí. Eletronic Journal of Biotechnology, Chile, v. 11, n.1, p. 85-94, 2007. Disponível em: http://www.ejbiotechnology.info. Acesso em: 14 set. 2013.
GATICA-ARIAS, A.M.; ARRIETA-ESPINOZA, G.; ESPINOZA-ESQUIVEL, A.M. Comparison of three in vitro protocols for direct somatic embryogenesis and plant regeneration of Coffea arabica L. cvs. Caturra and Catuaí. Agronomia Costarricense, Costa Rica, v. 31, n. 1, p. 85-94, 2007.
GEORGE, E.F.; DAVIES, W. Effects of the physiological environment. In: GEORGE, E.F., HALL, M.A., DE KLERK, G. (Eds.). Plant propagation by tissue culture, 3rd edition. Netherlands: Springer, 2008. p. 423-464.
GIRI, C.C.; SHYAMKUMAR, B.; ANJANEYUL, C. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees, Dordrecht, v. 18, p. 115-135, 2004.
GIRIDHAR, P. et al. Direct somatic embryogenesis from Coffea arabica L. and Coffea canephora P. ex Fr. under the influence of ethylene action inhibitor-silver nitrate. Acta Physiologiae Plantarum, New York, v. 26, n. 3, p. 299-305, 2004a.
GIRIDHAR, P. et al. Thidiazuron induced somatic embryogenesis in Coffea arabica L. and Coffea canephora P. ex Fr. Acta Botanica Croatica, Canada, v. 63, n. 1, p. 25-33, 2004b.
JAVED, M.A. et al. The role of alternating culture temperatures and maltose in enhancing the anther culture efficiency of salt tolerant indica rice (Oryza sativa L.) cultivars, Pokkali and Nona Bokra. Plant Biotechnology, Japan, v. 24, p. 283-287, 2007.
JIMÉNEZ, V.M. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regulation, Dordrecht, v. 47, p.91-110, 2005.
KVAALEN, H.; JOHNSEN, O. Timing of bud set in Picea abies is regulated bt a memory of temperatura during zigotic and somatic embryogenesis. New Phytologist, United States, v. 177, p. 49-59, 2008.
KLCOVA, L.; HAVRENTOVA, M.; FARAGO, J. Cultivar and environmental conditions affect the morphogenic ability of barley (Hordeum vulgare) scutellum-derived calli. Biologia, Btatislava, v. 59, n. 4, p. 501-504, 2004.
KUMAR, V.; RAMAKRISHNA, A. RAVISHANKAR, G.A. Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P. ex Fr. In Vitro Cellular Developmental Biology Plant, New York, v. 43, n. 6, p. 602-607, 2007.
LÓPEZ-GÓMEZ, P. et al. Influence of explant and culture medium on somatic embryogenesis of coffee leaves. Revista de Fitotecnia Mexicana, Chapingo, v. 33, n. 3, p. 205-213, 2010.
MORAIS, T.P.; MELO, T. Biotecnologia aplicada ao melhoramento genético do cafeeiro. Ciência Rural, Rio Grande do Sul, v. 41, n. 5, p.753-760, 2011.
MORAES, A.P. et al. Effect of temperature shock on soybean microspore embryogenesis. Brazilian Archives of Biology and Technology, Paraná, v. 47, n. 4, p. 537-544, 2004.
MORINI, S. et al. Effect of high and low temperature on the leaf regenerating capacity of Quince BA29 rootstock. Acta Horticulturae, Belgium, v. 658, p. 591-597, 2004. Disponível em: http://www.actahort.org/books/658/658_89.htm. Acesso em: 21 ago. 2013.
MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bioassays with tabacco tissue cultures. Physiologia Plantarum, Copenhagen, v. 15, p. 473-497, 1962.
ORTOLAN, A.R. et al. Efeito da temperatura e luminosidade na regeneração in vitro de plantas de trigo. Scientia Agraria, Paraná, v. 8, n. 1, p. 61-65, 2007.
PAPANASTASIOU, L. et al. Effect of liquid pulses with 6-benzyladenine on the induction of somatic embryogenesis from coffee (Coffea arabica) callus cultures Plant Cell Tissue Organ Culture, Dordrecht, v. 92, n. 2, p. 215-225, 2008.
PEREIRA, A.R. et al. Embriogênese somática direta em explantes foliares de Coffea arabica L. cv. Acaiá cerrado: efeito de cinetina e ácido giberélico. Ciência e Agrotecnologia, Lavras, v. 31, n. 2, p. 332-336, 2007.
QUIROZ-FIGUEROA, F.R. et al. Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Culture, Dordrecht, v. 86, p. 285-301, 2006.
REZENDE, J.C. et al. Multiplication of embryogenic calli in Coffea arabica L. Acta Scientiarum, Maringá, v. 34, n. 1, p. 93-98, 2012.
REZENDE, J.C. et al. Indução de calos em explantes foliares de clones de elite de café. Ciência Rural, Rio Grande do Sul, v. 41, 3, p. 384-389, 2011.
SAMSON, N.P. et al. Effect of primary culture medium composition of high frequency somatic embryogenesis in different Coffea species. Plant Cell Tissue Organ Culture, Dordrecht, v. 86, p. 37-45, 2006.
SANTOS-BRIONES, C. De Los; HERNÁNDEZ-SOTOMAYOR, S.M.T. Coffee biotechnology. Brazilian Journal Plant Physiology, Brasil, v. 18, n. 1, p. 217-227, 2006.
TORRES-VIÑALS, M. et al. Large-scale production of somatic embryos as a source of hypocotyl explants for Vitis vinifera micrografting. Vitis, v. 43, n. 4, p. 163-168, 2004.
WANG, Y.; CAMPBELL, C. Effects of genotypes, pretreatments and media in anther culture of common (Fagopyrum esculentum) and self-pollinating buckwheat. Fagopyrum, , v. 23, p. 29-35, 2006.
YANG, J.L. et al. Direct somatic embryogenesis from pericycle cells of broccoli (Brassica oleracea L. var. italic) root explants. Plant Cell, Tissue and Organ Culture, Dordrecht, v. 100, n. 1, p. 49-58, 2010.
Published
How to Cite
Issue
Section
Os direitos autorais dos artigos publicados nesta revista pertencem aos autores, com os primeiros direitos de publicação pertencentes à revista. Como os artigos aparecem nesta revista com acesso aberto, eles podem ser usados livremente, com as devidas atribuições, em aplicativos educacionais e não comerciais.