Resistance inductors in control of coffee cercosporiose: analysis of genes related to defense

Authors

  • SANDRA ELIZA GUIMARÃES UNIVERSIDADE FEDERAL DE LAVRAS
  • MÁRIO LÚCIO RESENDE UNIVERSIDADE FEDERAL DE LAVRAS
  • DEILA DOS SANTOS UNIVERSIDADE FEDERAL DE LAVRAS
  • ANA CRISTINA MONTEIRO UNIVERSIDADE FEDERAL DE LAVRAS
  • VICTOR AUGUSTO VASCONCELOS UNIVERSIDADE FEDERAL DE LAVRAS
  • MANOEL BATISTA JÚNIOR UNIVERSIDADE FEDERAL DE LAVRAS

DOI:

https://doi.org/10.25186/cs.v11i3.1071

Keywords:

Resistance induction, oxygen reactive species, PR-protein, lipid oxidation

Abstract

The objective of this study was to evaluate the effect of resistance inducers, plant extract-based formulations and fungicide over the protection of coffee seedlings in controlling Cercospora coffeicola. In addition, the objective was to select alternative treatments that highlight in control of Cercospora leaf spot and study its effect as resistance inducer through the defense gene expression analysis. The treatments applied were: Greenforce CuCa, Greenforce KP, ET64-DT, which are plant extracts-based formulations (are under patent secrecy - PI 0603575-2), mineral fertilizer, acibenzolar-S-methyl (ASM) and, as control, the epoxiconazole + pyraclostrobin fungicide. We conducted weekly evaluations of incidence of cercosporiose to calculate the area under the curve of disease incidence progress (AUCDIP). After analysis of this experiment, the two best alternative treatments to evaluate the resistance-inducing potential of them were chosen. For this, a second experiment was carried out in order to analyze the expression of genes that are translated into the lipoxygenase, catalase, glutathione peroxidase and chitinase enzymes. The application of epoxiconazole + pyraclostrobin fungicide resulted in more effective control of the incidence of the disease, differing from the other treatments tested. The Greenforce Cuca and ASM, 0.05 g.L-1, products resulted in a reduction of AUCDIP of cercosporiose by 38 and 35%, respectively, differing from the other treatments. In the analysis of gene response expression to induce, it was observed that the highest expression of the genes encoding the lipoxygenase, catalase, glutathione peroxidase and chitinase enzymes occurred at 24 hours after application of ASM and 48 hours for Greenforce Cuca, no difference from one treatment to the other in these periods. Plants were sprayed with Greenforce Cuca showed a higher expression of the lipoxygenase gene at 72 hours after application of this product, differed from the ASM. With this work, we found that Greenforce Cuca and ASM products control Cercospora leaf spot through the induction of defense genes in coffee.

Author Biographies

SANDRA ELIZA GUIMARÃES, UNIVERSIDADE FEDERAL DE LAVRAS

BIÓLOGA, DOUTORANDA DO DEPARTAMENTO DE FITOPATOLOGIA, UNIVERSIDDADE FEDERAL DE LAVRAS, CAIXA POSTAL: 3037

MÁRIO LÚCIO RESENDE, UNIVERSIDADE FEDERAL DE LAVRAS

AGRÔNOMO, PROFESSOR DO DEPARTAMENTO DE FITOPATOLOGIA DA UNIVERSIDADE FEDERAL DE LAVRAS

DEILA DOS SANTOS, UNIVERSIDADE FEDERAL DE LAVRAS

AGRÔNOMA, PÓS-DOUTORANDA DO DEPARTAMENTO DE FITOPATOLOGIA DA UNIVERSIDADE FEDERAL DE LAVRAS

ANA CRISTINA MONTEIRO, UNIVERSIDADE FEDERAL DE LAVRAS

ENGENHEIRA AGRÔNOMA, PÓS-DOUTORANDA EM FITOPATOLOGIA UNIVERSIDADE FEDERAL DE LAVRAS

VICTOR AUGUSTO VASCONCELOS, UNIVERSIDADE FEDERAL DE LAVRAS

AGRONOMIA NA UNIVERSIDADE FEDERAL DE LAVRAS

MANOEL BATISTA JÚNIOR, UNIVERSIDADE FEDERAL DE LAVRAS

AGRÔNOMO, DOUTORANDO NO DEPARTAMENTO DE FITOPATOLOGIA DA UNIVERSIDADE FEDERAL DE LAVRAS

References

ALSCHER, R. G.; ERTURK , N.; HEATH, L. S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, v. 53, n. 372, p. 1331–1341, May. 2002.

BARGUIL, B. M. et al. Effect of extracts from citric biomass, rusted coffee leaves and coffee berry husks on Phoma costaricencis of coffee plants. Fitopatologia Brasileira, Brasília, v. 30, n. 5, p. 535-537, Set./Out. 2005.

BARSALOBRES-CAVALLARI, et al. Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Molecular Biology, v. 10, n. 1, Doi: 10.1186/1471-2199-10-1. 2009.

BUCHANAN, B. B.; GRUISSEM, W.; JONES, R. L. Biochemistry & molecular biology of plants. Rockville: American Society of Plant Physiologists. 2006. 1341 p.

CAVALCANTI, L. S.; RESENDE, M. L. V. Efeito da época de aplicação e dosagem do acibenzolar-S-metil na indução de resistência à murcha-de-Verticillium em cacaueiro. Fitopatologia Brasileira, Brasília, v. 30, n. 1, p. 67-71, Jan./Fev., 2005.

COSTA, B. H. G. et al. Suppression of Rust and Brown Eye Spot Diseases on Coffee by Phosphites and By-products of Coffee and Citrus Industries. Journal of Phytopathology, v. 162, n. 10, p. 635-642, Oct. 2014.

CUSTODIO A, POZZA, E. A., GUIMARAES, S. S. C., KOSHIKUMO, E. S. M., HOYOS, J. M. A., SOUZ A P. E.Comparison and validation of diagrammatic scales for brown eye spots in coffee tree leaves. Ciencia e Agrotecnologia, v. 35, n. 2, p. 1067–1076, Ago. 2011.

DAUB, M. E.; HERRERO, S.; CHUNG, K. R. Photoactived perylenequinone toxins in fungal pathogenesis of plants. FEMS Microbiology Letters, Birmingham, v. 252, n. 2, p. 197-206, Nov. 2005.

DAUB, M. E.; CHUNG, K. R. Cercosporin: a photoactivated toxin in plant disease. The American Phytopathological Society, Saint Paul, 2007. Disponível em: http://www.apsnet.org/online/feature/Cercosporin/. Acesso em: 27 de outubro de 2014.

DJÉBALI, N. et al. Hydrogen peroxide scavenging mechanisms are components of Medicago truncatula partial resistance to Aphanomyces euteiches. European Journal Plant Pathology, v. 131, n. 4, p. 559-571, Jul. 2011.

FERREIRA, D. F. Manual do sistema Sisvar para análises estatísticas. Lavras: UFLA, 2000. 66p.

GANESH, D. et al. Monitoring of the early molecular resistance responses of coffee (Coffea arabica L.) to the rust fungus (Hemileia vastatrix) using real-time quantitative RT-PCR. Plant Science, Shannon, v. 170, n. 6, p. 1045-1051, Jan. 2006.

GECHEV, T. S. et al. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays, v. 28, n. 11, p. 1091-1101, 2006.

GILL, S. S.; TUTEJA, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, v. 48, n. 12, p. 909-930, Dec. 2010.

GODOY, C. V.; BERGAMIN FILHO, A.; SALGADO, C. L. Doenças do cafeeiro. In: KIMATI, H. et al. (Eds.). Manual de Fitopatologia, Doenças das plantas cultivadas. Viçosa: Editora Agronômica Ceres, 1997. V. 2, 3rd Ed., p. 184–200.

GUIMARÃES, P. T. G. et al. Cafeeiro. In: RIBEIRO, A. C.; GUIMARÃES, P. T. G.; VENEGA, V. H. A. (Eds.). Recomendações para uso de corretivos e fertilizantes em Minas Gerais: 5ª aproximação. Viçosa, MG: CFSEMG, 1999, p. 289-302.

HU, Z. H. et al. Effects of feeding Closteraana choreta on hydrogen peroxide accumulation and activities of peroxidase, catalase, and ascorbate peroxidase in Populus simonii x P. pyramidalis “Opera 8277” leaves. Acta Physiologica Plantarum, Amsterdam, v. 31, n. 5, p. 995-1002, 2009.

LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of relative gene expression data using realtime quantitative PCR and the 2-ΔΔC T. Methods, v. 25, n. 4, p. 402 – 408, Dec. 2001.

LUKASIK, I.; GOLAWSKA, S.; WÓJCICKA, A. Effect of cereal aphid infestation on ascorbate content and ascorbate peroxidase activity in triticale. Polish Journal of Environmental Studies, Oxford, v. 21, n. 6, p. 1937-1941, June 2012.

MHAMDI, A. et al. Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves. Plant, Cell and Environment, Oxford, v. 33, n. 7, p. 1112–1123, Jul. 2010.

NAVROT, N. et al. Identification of a new family of plant proteins loosely related to glutaredoxins with four CxxCmotives. Photosyntesys Research, Hague, v. 89, n. 2-3, p. 71-79, Sep. 2006.

PATRÍCIO, F. R. A. et al. Effectiveness of acibenzolar-S-methyl, fungicides and antibiotics for the control of brown eye spot, bacterial blight, brown leaf spot and coffee rust in coffee. Annals of Applied Biology, Warwick, v. 152, n. 1, p. 29-39, Sep. 2007.

PATRICIO, F. R. A.; BRAGHINI, M. T.Efeito de fungicidas triazóis sobre o controle da cercosporiose em mudas de cafeeiro. Arquivo Instituto Biologico, São Paulo, v. 78, n. 2, p. 241-249, Abr./Jun., 2011.

PEREIRA, R. B. et al. Extrato de casca de café, óleo essencial de tomilho e acibenzolar-S-metil no manejo da cercosporiose-do-cafeeiro. Pesquisa Agropecuária Brasileira, Brasília, v. 43, n. 10, p. 1287-1296, out. 2008.

PIETERSE, C. M. J. et al. Induced Systemic Resistance by Beneficial Microbes, Annual Review Phytopathology, v. 52, p. 347–375, Aug. 2014.

PITZSCHKE, A.; FORZANI, C.; HIRT, H. Reactive oxygen species signaling in plant. Antioxidants and Redox Signaling, v. 8, n. 9/10, p. 1756-1764, Oct. 2006.

POZZA, A. A. A. et al. Intensidade da mancha de olho pardo em mudas de cafeeiro em função de doses de N e K em solução nutritiva. Summa Phytopathologica, v. 26, n. 1, p. 29-33, Jan. 2000.

ROMERO, G. et al. Partial resistance to leaf rust (Hemileia vastatrix) in coffee (Coffea Arabica L.): genetic analysis and molecular characterization of putative candidate genes. Molecular Breeding, Dordrecht, v. 25, n. 4, p. 685-697, Apr. 2010.

SHANER, G.; FINNEY, R. E. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in knox wheat. Phytopathology, v. 70, p. 1183-1186, 1977.

SOUZA, A. G. C. et al. Infection process of Cercospora coffeicola on coffee leaf. Journal of Phytopathology, Berlim, v. 159, n. 1, p. 6–11, Jan. 2011

Published

2016-07-15

How to Cite

GUIMARÃES, S. E.; RESENDE, M. L.; DOS SANTOS, D.; MONTEIRO, A. C.; VASCONCELOS, V. A.; JÚNIOR, M. B. Resistance inductors in control of coffee cercosporiose: analysis of genes related to defense. Coffee Science - ISSN 1984-3909, v. 11, n. 3, p. 308 - 317, 15 Jul. 2016.

Issue

Section

Articles