Modis images for agrometeorological monitoring of coffee areas
DOI:
https://doi.org/10.25186/cs.v8i2.398Keywords:
Coffee, remote sensing, water balance, NDVIAbstract
Agrometeorological monitoring of coffee lands has conventionally been performed in the field using data from land-based meteorological stations and field surveys to observe crop conditions. More recent studies use satellite images, which assess large areas at lower costs. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor of the Earth satellite provides free images with high temporal resolution and vegetation specific products, such as the MOD13, which provides the Normalized Difference Vegetation Index (NDVI) processed in advanced. The objective of this study was to evaluate the relation between the NDVI spectral vegetation index and the meteorological and water balance variables of coffee lands of the south of Minas Gerais in order to obtain statistical models of this relationship. The study area is located in the municipality of Três Pontas, Minas Gerais, Brazil. The statistical models obtained demonstrate a significant negative correlation between the NDVI and water deficit. NDVI values under 70% may represent a water deficit in the coffee plants. The models developed in this study could be used in the agrometeorological monitoring of coffee lands in the south of Minas Gerais.
References
CAMARGO, A. P. de; CAMARGO, M. B. P. Definição e esquematização das fases fenológicas do cafeeiro arábica nas condições tropicais do Brasil. Bragantia, Campinas, v. 60, n. 1, p. 65-68, 2001.
CHEN, D.; HUANG, J.; JACKSON, T. J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sensing of Environment, New York, v. 98, p. 225-236, 2005.
HILL, M. J.; DONALD, G. E. Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series. Remote Sensing of Environment, New York, v. 84, p. 367-384, 2003.
LIU, W. T. H; MASSAMBANI, O.; NOBRE, C. Satellite recorded vegetation response to drought in Brazil. International Journal of Climatology, London, v. 14, p. 343-354, 1994.
LIU, W. T; FERREIRA, A. Monitoring crop production regions in São Paulo State of Brazil using NDVI. In: INTERNATIONAL SYMPOSIUM OF REMOTE SENSING FOR ENVIRONMENT, 24., Rio de Janeiro, 1991. Proceedings… Ann Arbor. Michigan:
ERIM, 1991. v. 2, p.447-455.
MEIRELES, E. J. L.; Volpato, M. M. L.; CAMARGO, M. B. P.; CARAMORI, P. H.; FAHL, J. I.; BARTHOLO, G. F. Café. In: MONTEIRO, J. E. B. A. (Org.). Agrometeorologia dos Cultivos: O fator meteorológico na produção agrícola. 1 ed. Brasília: Instituto Nacional de Meteorologia, 2009, p. 351-372.
SCHULTZ, P. A.; HALPERT, M. S. Global analysis of the relationships among a vegetation index, precipitation and land surface temperature. International Journal of Remote Sensing, London , v. 16, p. 2755-2778, 1995.
SOUZA, J. L. M.; FRIZZONE, J. A. Simulação do balanço hídrico para a cultura do cafeeiro nas regiões de Lavras e Uberlândia. Scientia Agraria, Paraná, v. 8, n. 3, p. 291-301. 2007.
THORNTHWAITE, C. W.; MATHER, J. R. The water balance. Publications in climatology, v. 8, n.1. New Jersey: Centerton, 1955, 104p.
TUCKER, C.J, PINZON J.E., BROWN, M.E, SLAYBACK, D., PAK E., MAHONEY R, VERMOTE E, EL SALEOUS, N., An Extended AVHRR 8-km NDVI Data Set Compatible with MODIS and SPOT Vegetation NDVI Data. International Journal of Remote Sensing, London, v. 26, p. 4485-4498, 2005.
ZHANG, X.; FRIEDL, M. A.;. SCHAAF, C. B; STRAHLER, A. H.; HODGES, J. C. F; GAO, F; REED, B. C.; HUETE, A. Monitoring Vegetation Phenology Using Modis. Remote Sensing of Environment, New York, v. 84, p. 471-475, 2003.
Published
How to Cite
Issue
Section
Os direitos autorais dos artigos publicados nesta revista pertencem aos autores, com os primeiros direitos de publicação pertencentes à revista. Como os artigos aparecem nesta revista com acesso aberto, eles podem ser usados livremente, com as devidas atribuições, em aplicativos educacionais e não comerciais.