Behavior of the biochemical attributes of a Oxisol submitted to high doses of gypsum in the coffee culture
DOI:
https://doi.org/10.25186/.v15i.1756Abstract
The objective of this study was to determine the influence of increasing doses of agricultural gypsum on the quality of the soil biochemical attributes in coffee cultivation (Coffea arabica L.) by two climatic seasons in the Brazilian Cerrado. Soil samples were collected in two collections (dry and rainy season), at 0 – 10 cm depth of a Oxisol, submitted to doses 0 (GSA); 3.5 (G3.5); 7.0 (G7.0) and 14 (G14) Mg ha-1 of agricultural gypsum in the coffee planting line. The biochemical attributes evaluated were: total organic carbon (TOC); microbial biomass carbon (MBC); soil basal respiration (SBR); absolute enzymatic activities [Urease, acid phosphatase, hydrolysis of fluorescein diacetate (FDA)]. TOC showed no differences between treatments. The significant effect (p ≤ 0.05) of gypsum doses was observed for MBC and SBR, which were higher in the treatment with G7.0 application. The enzymatic activities of Phosphatase and the FDA showed no differences between treatments. On the other hand, the specific enzymatic activities by MBC were to describe the differences between the doses of gypsum applied, generally with greater activity in treatments G7.0 and G14. The accumulated coffee productivity was higher in G14 treatment. The results presented to confirm that the biochemical attributes of the soil are sensitive in the evaluation of changes in soil use and that the increase in gypsum does favor activity and microbial biomass.
References
ALEF, K. Estimation of soil respiration. In: ALEF, K.; NANNIPIERI, P. (Eds.). Methods in applied soil microbiology and biochemistry. Academic Press, New York, p.464-470, 1995.
ANDERSON, T. H.; DOMSCH, K. H. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil & Tillage Research, 25:393-395, 1993.
CARDUCCI, C. E. et al. Distribuição espacial das raízes de cafeeiro e dos poros de dois Latossolos sob manejo conservacionista. Revista Brasileira de Engenharia Agrícola e Ambiental, 18:270-278, 2014a.
CARDUCCI, C. E. et al. Gypsum effects on the spatial distribution of coffee roots and the pores system in oxidic Brazilian Latosol. Soil & Tillage Research, 145:171-180, 2015.
CARDUCCI, C. E. et al. Spatial variability of pores in oxidic latosol under a conservation management system with different gypsium doses. Ciência e Agrotecnologia, 38:445-460, 2014b.
CARNEIRO, M. A. C. et al. Atributos físicos, químicos e biológicos de solo de cerrado sob diferentes sistemas de uso e manejo. Revista Brasileira de Ciência do Solo, 33:147-157, 2009.
CARNEIRO, M. A. C. et al. Carbono orgânico, nitrogênio total, biomassa e atividade microbiana do solo em duas cronossequências de reabilitação após a mineração de bauxita. Revista Brasileira de Ciência do Solo, 32:621- 632, 2008.
CASTRO, A. P. et al. Microbial diversity in cerrado biome (Neotropical Savanna) Soils. PLoS One, 11(2):e0148785, 2016.
COUTO, C. C. et al. Coffea arábica and C. canéfora discrimination in roasted and ground coffee from reference material candidates by real-time PCR. Food Research International, 115:227-233, 2019.
DICK, R. P.; BREAKWELL, D. P.; TURCO, R. F. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: DORAN, J. W.; JONES, A. J. (Eds.). Methods for Assessing Soil
Quality. Soil Science Society of America, Madison, p.247-272, 1996.
DORAN, J. W.; ZEISS, M. R. Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology, 15:3-11, 2000.
EIVAZI, F.; TABATABAI, M. A. Phosphatases in soils. Soil Biology & Biochemistry, 9:167-172, 1977.
FERREIRA, D. F. Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia, 35:1039-1042, 2011.
KEENEY, D. R.; NELSON, D. W. Nitrogen organic forms. In: PAGE, A. L. (Ed). Methods of soil analysis: Chemical and microbiological properties. 2nd ed. Soil Science Society of America, Madison,
p.643-698, 1982.
LOPES, A. A. C. et al. Interpretation of microbial soil indicators as a function of crop yield and organic carbon. Soil Science Society of America Journal, 77:461-472, 2013.
LOPES, A. S.; GUILHERME, L. R. G. A career perspective on soil management in the Cerrado region of Brazil. Advances in Agronomy, 137:1-72, 2016.
MARTINS, C. C. et al. Manejo da irrigação por gotejamento no cafeeiro (Coffea arabica L.). Bioscience Journal, 23:61-69, 2007.
MENDES, I. C. et al. Biological functioning of Brazilian Cerrado soils under different vegetation types. Plant Soil, 359:183-195, 2012.
MYERS, N. et al. Biodiversity hotspots for conservation priorities. Nature, 403:853-858, 2000.
R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing Retrieved. 2011. Available in: http://www.r-project.org>. Access in: January, 05, 2020.
RAIESI, F.; BEHESHTI, A. Microbiological indicators of soil quality and degradation following conversion of native forests to continuous croplands. Ecological Indicators, 50:173-185, 2015.
RAIESI, F.; BEHESHTI, A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Applied Soil Ecology, 75:63-70, 2014.
RAMOS, B. Z. et al. Doses de gesso em cafeeiro: Influência
nos teores de cálcio, magnésio, potássio e pH na solução de um Latossolo Vermelho distrófico. Revista Brasileira de Ciência do Solo, 37:1018-026, 2013.
SANTOS, T. B. et al. An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: Insights on nitrogen starvation responses. Functional & Integrative Genomics, 19:151-169, 2019.
SERAFIM, M. E. et al. Potencialidades e limitações de uso de Latossolos e Cambissolos, sob sistema conservacionista em lavouras cafeeiras. Bioscience Journal, 29:1640-1652, 2013.
SILVA, A. O. et al. Soil microbiological attributes indicate recovery of an iron mining area and of the biological quality of adjacent phytophysiognomies. Ecological Indicators, 93:142-151, 2018.
SILVA, B. M. et al. Critical soil moisture range for a coffee crop in an oxidic latosol as affected by soil management. Soil & Tillage Research, 154:103-113, 2015.
SILVA, B. M. et al. Soil moisture associated with least limiting water range, leaf water potential, initial growth and yield of coffee as affected by soil management system. Soil & Tillage Research, 189:36-43, 2019a.
SILVA, E. A. et al. Aggregate stability by the “high energy moisture characteristic” method in an oxisol under differentiated management. Revista Brasileira de Ciência do Solo, 38:1633-1642, 2014.
SILVA, E. A. et al. Doses crescentes de gesso agrícola, estabilidade de agregados e carbono orgânico em Latossolo do Cerrado sob Cafeicultura. Revista de Ciências Agrárias: Amazonian Journal of Agricultural
and Environmental Sciences, 56:25-32, 2013.
SILVA, É. O. et al. Seasonal effect of land use type on soil absolute and specific enzyme activities in a Brazilian semi-arid region. Catena, 172:397-407, 2019b.
SOUSA, D. M. G.; LOBATO, E.; REIN, T. A. Uso do gesso agrícola nos solos do Cerrado. 2. ed. Planaltina: EMBRAPA-CPAC. 2005. Available in: http://bbeletronica.cpac.embrapa. br/2005/cirtec/cirtec_32.pdf.
Access in: January, 05, 2020.
SPARLING, G. P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research, 30:195-207, 1992.
SUMNER, M. E. Amelioration of subsoil acidity with minimum disturbance. In: JAYAWARDANE, N. S.; STEWART, B. A. (Ed.). Subsoil management techniques. Athens: Lewis Publishers, p.147-185, 1995.
TABATABAI, M. A.; BREMNER, J. M. Assay of uréase activity in soil. Soil Biology & Biochemistry, 4:479-487, 1972.
TRASAR-CEPEDA, C.; LEIRÓS, M.; GIL-SOTRES, F. Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality. Soil Biology & Biochemistry, 40:2146-2155, 2008.
VANCE, E. D.; BROOKS, P. C.; JENKINSON, D. S. Na extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19:703-707, 1987.
VERBRUGGEN, E. et al. Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? Journal of Ecology, 104:261-269, 2016.
WALDROP, M. P.; BALSER, T. C.; FIRESTONE, M. K. Linking microbial community composition to function in a tropical soil. Soil Biology & Biochemistry, 32:1837-1846, 2000.
WALKLEY, A.; BLACK, I. A. An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Science, 37:29-38, 1934.
Published
How to Cite
Issue
Section
Os direitos autorais dos artigos publicados nesta revista pertencem aos autores, com os primeiros direitos de publicação pertencentes à revista. Como os artigos aparecem nesta revista com acesso aberto, eles podem ser usados livremente, com as devidas atribuições, em aplicativos educacionais e não comerciais.