Moisture dynamic sorption isotherms and thermodynamic properties of parchment specialty coffee (Coffea arabica L.)

Authors

  • Gentil Andrés Collazos Escobar Universidad Surcolombiana, Centro Surcolombiano de Investigación en Café/CESURCAFE, Departamento de Ingeniería Agrícola, Neiva, Colombia. https://orcid.org/0000-0002-0659-8897
  • Nelson Gutierrez Guzman Universidad Surcolombiana, Centro Surcolombiano de Investigación en Café/CESURCAFE, Departamento de Ingeniería Agrícola, Neiva, Colombia. http://orcid.org/0000-0003-2499-8066
  • Henry Alexander Vaquiro Herrera Universidad del Tolima, Facultad de Ingeniería Agronómica, Ibagué, Tolima, Colombia. https://orcid.org/0000-0002-9684-1423
  • Claudia Milena Amorocho Cruz Universidad Surcolombiana, Centro Surcolombiano de Investigación en Café/CESURCAFE, Departamento de Ingeniería Agrícola, Neiva, Colombia. https://orcid.org/0000-0003-3986-5768

DOI:

https://doi.org/10.25186/.v15i.1684

Keywords:

water activity, equilibrium moisture content, hygroscopicity, non- spontaneous, molecular ordering, compensation theory

Abstract

Sorption isotherms represent an efficient and valuable tool for predicting the equilibrium moisture content of foods under different humidities and temperatures; thus, they are useful for determining shelf-life and safe storage conditions. The aims of this work were to determine the sorption isotherms of parchment specialty coffee at water activity values of 0.1−0.8 and temperatures of 25, 30, and 40 °C using the dynamic dew point method. The experimental sorption data were modeled using 12 different equations to represent the dependence of equilibrium moisture content on water activity and temperature. Thermodynamic properties were also obtained from the experimental data. The results showed a type II sigmoid shape according to Brunauer-Emmett-Teller (BET) classification, and the double log polynomial (DLP) equation successfully modeled the effects of temperature on the sorption isotherms, obtaining a good fit (R2adj = 0.99 and RMSE = 0.1 % dry basis). The dynamic dewpoint isotherm (DDI) method was advantageous for modelling due to its high availability of experimental data. Thermodynamic analyses showed that the net isosteric heat of sorption, Gibbs free energy, and sorption entropy decreased as equilibrium moisture content increased, and the compensation theory provided evidence that the sorption process was controlled by enthalpy (Tβ > Thm).

Key words: Water activity; equilibrium moisture content; hygroscopicity; non-spontaneous; molecular ordering; compensation theory.

Author Biography

Nelson Gutierrez Guzman, Universidad Surcolombiana, Centro Surcolombiano de Investigación en Café/CESURCAFE, Departamento de Ingeniería Agrícola, Neiva, Colombia.

Postdoctorado Universidad Politecnica de Valencia
Tecnología de Alimentos
Febrerode2012 - Juniode 2012
Analisis y control de calidad en pescado

Doctorado Universidad Politecnica de Valencia
Doctorado tecnologia de alimentos
Enerode2002 - Noviembrede 2008
Identificación y priorización de factores críticos para implantar buenas prácticas agrícolas en productores de café y frutas en el departamento del Huila en Colombia

Maestría/Magister Universidad Politecnica de Valencia
Master ciencia ingenieria de alimentos
Enerode2002 - de 2002

Pregrado/Universitario Universidad Surcolombiana
Ingenieria agricola
Enerode1985 - de 1991

References

ANASTOPOULOS, I. et al. A review for coffee adsorbents. Journal of Molecular Liquids, 229:555-565, 2017.

BAHAMON, M. A. F.; PARRADO, L. X.; GUTIÉRREZ-GUZMÁN, N. ATR-FTIR for discrimination of espresso and American coffee pods. Coffee Science, 13(4):550-558 2018.

BARBIN, D. F. et al. Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview. Food Research International, 61:23-32, 2014.

BASTIOĞLU, A. Z.; KOÇ, M.; ERTEKIN, F. G. Moisture sorption isotherm of microencapsulated extra virgin olive oil by spray drying. Food Measure, 11:1295-1305, 2017.

BENSEBIA, O.; ALLIA, K. Analysis of adsorption–desorption moisture isotherms of rosemary leaves. Journal of Applied Research on Medicinal and Aromatic Plants, 3(3):79-86, 2016.

BORÉM, M. F. Evaluation of the sensory and color quality of coffee beans stored in hermetic packaging. Journal of Stored Products Research, 52:1-6, 2013.

CANO-HIGUITA, D. M. Influence of alternative drying aids on water sorption of spray dried mango mix powders: A thermodynamic approach. Food and Bioproducts Processing, 93:19-28, 2015.

ČERVENKA, L.; HLOUŠKOVÁ, L.; ŽABČÍKOVÁ, S. Moisture adsorption isotherms and thermodynamic properties of green and roasted Yerba mate (Ilex paraguariensis). Food Bioscience, 12:122-127, 2015.

COLLAZO-BIGLIARDI, S.; ORTEGA-TORO, R.; CHIRALT, B. A. Isolation and characterization of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers, 191:205-215, 2018.

COLLAZOS-ESCOBAR, G. A.; GUTIÉRREZ-GUZMÁN, N.; VAQUIRO, H. H. A. Modeling dynamic adsorption isotherms and thermodynamic properties of specialty ground roasted-coffee (Coffee Arabica L.). Coffee Science, 14(1):93, 2019.

CORRÊA, P. C. et al. Moisture sorption isotherms and isosteric heat of sorption of coffee in different processing levels. International Journal of Food Science and Technology, 45(10): 2016-2022, 2010.

CRAIG A. P.; FRANCA, A. S.; OLIVEIRA, L. S. Evaluation of the potential of FTIR and chemometrics for separation between defective and non-defective coffees. Food Chemistry, 132(1):1368-1374, 2012.

CRAIG, A. P. et al. Mid infrared spectroscopy and chemometrics as tools for the classification of roasted coffees by cup quality. Food Chemistry, 245:1052-1061, 2018.

CRAIG, A. P. et al. Fourier transform infrared spectroscopy and near infrared spectroscopy for the quantification of defects in roasted coffees. Talanta, 134:379-386, 2015.

DI DONFRANCESCO, B.; GUTIERREZ, G. N.; CHAMBERS, IV. E. Comparison of results from cupping and descriptive sensory analysis of Colombian brewed coffee. Journal of Sensory Studies, 29(4):301-311, 2014.

DOMIAN, E. et al. Effect of carbohydrate type on the DVS isotherm-induced phase transitions in spray-dried fat-filled pea protein-based powders. Journal of Food Engineering, 222:115-125, 2018.

DONOVAN, K. N.; FOSTER, A. K.; PARRA, S. C. A. Analysis of green coffee quality using hermetic bag storage. Journal of Stored Products Research, 80:1-9, 2019.

GHOSH, P.; VENKATACHALAPATHY, N. Changes in physico-chemical properties of coffee due to hot air assisted microwave drying. International Journal of Processing and Post Harvest Technology, 6(1):69-79, 2015.

GONELI, A. L. D. et al. Water sorption properties of coffee fruits, pulped and green coffee. LWT - Food Science and Technology, 50(2):386-391, 2013.

IACCHERI, E. et al. Different analytical approaches for the study of water features in green and roasted coffee beans. Journal of Food Engineering, 146:28-35, 2015.

INGLEZAKIS, J. V.; POULOPOULOS, S. G.; KAZEMIAN, H. Insights into the S-shaped sorption isotherms and their dimensionless forms. Microporous and Mesoporous Materials, 272: 166-176, 2018.

KHAWAS, P.; CHANDRA, D. S. Moisture sorption isotherm of underutilized culinary banana flour and its antioxidant stability during storage. Journal of Food Processing and Preservation, 41(4):e13087, 2017.

MARTÍNEZ-LAS HERAS, R. et al. Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Bioscience, 7:88-94, 2014.

MELO PEREIRA, V. D. et al. Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chemistry, 272:441-452, 2018.

MONTE, L. M. et al. Moisture sorption isotherms of chitosan-glycerol films: Thermodynamic properties and microstructure. Food Bioscience, 22:170-177, 2018.

MOUSA, W. et al. Sorption isotherms and isosteric heats of sorption of Malaysian paddy. J Food Sci Technol, 51(10):2656-2663, 2012.

NOSHAD, M. et al. Desorption isotherms and thermodynamic properties of fresh and osmotic–ultrasonic dehydrated quinces. Journal of Food Processing and Preservation, 37(5):381-390, 2012.

OLIVEIRA, G. H. et al. Roasting, grinding, and storage impact on thermodynamic properties and adsorption isotherms of arabica coffee. Journal of food processing and preservation, 41(2):e12779, 2017.

ÖZDESTAN, Ö. et al. Differentiation of specialty coffees by proton transfer reaction-mass spectrometry. Food Research International, 53(1):433-439, 2013.

RAMÍREZ-MARTÍNEZ, A. et al. Water transport in parchment and endosperm of coffee bean. Journal of Food Engineering, 114(3):375-383, 2013.

REIS, N.; FRANCA, S. A.; OLIVEIRA, S. L. Discrimination between roasted coffee, roasted corn and coffee husks by diffuse reflectance infrared Fourier transform spectroscopy. LWT - Food Science and Technology, 50(3):715-722, 2013.

RENDÓN, M. Y.; GARCIA, S. T. J.; BRAGAGNOLO, N. Impact of chemical changes on the sensory characteristics of coffee beans during storage. Food Chemistry, 147:279-286, 2014.

SCHMIDT, S. J.; LEE, W. J. Comparison between water vapor sorption isotherms obtained using the new dynamic dewpoint isotherm method and those obtained using the standard saturated salt slurry method. International Journal of Food Properties, 15(2):236-248, 2012.

SHIGEHISA, T.; INOUE, T.; KUMAGAI, H. Mathematical model of water sorption isotherms of UBC. Fuel Processing Technology, 131:133-141, 2015.

SHITTU, T. A. et al. Water vapor adsorption characteristics of starch-albumen powder and rheological behavior of its paste. Nigerian Food Journal, 33(1):90-96, 2015.

SORMOLI, M. E.; LANGRISH, T. A. G. Moisture sorption isotherms and net isosteric heat of sorption for spray-dried pure orange juice powder. LWT - Food Science and Technology, 62(1):875-882, 2015.

SPECIALTY COFFEE ASSOCIATION OF AMERICA SCAA. Coffee standards, water activity standard. 2019. Available on: https://sca.coffee/research/coffee-standards. Access on: 18 August. 2019

SPECIALTY COFFEE ASSOCIATION OF AMERICA SCAA. Protocols: coffee cupping standards, 2015. Available on: http://scaa.org/?page=resources&d=cupping-standards. Access on: 22 March. 2019

TAPIERO, S. O.; TRUJILLO, B. D.; GUTIÉRREZ, G. N. Aplicación del proceso analítico jerárquico AHP para definir la mejor taza en evaluación de cafés especiales. Coffee Science, 12(3):374-380, 2017.

TEIXEIRA, P. L.; ANDRADE, E. T. de.; DEVILLA, A. I. Isosteric heat, entropy, and Gibbs free energy of pumpkin seeds (Cucurbita moschata). Engenharia Agrícola, 38(1):97-201, 2018.

TOLESSA, K. et al. Prediction of specialty coffee cup quality based on near infrared spectra of green coffee beans. Talanta, 150:367-374, 2016.

VELASQUEZ, S. et al. Determination of the complex permittivity of cherry, pulped, green, and roasted coffee using a planar dielectric platform and a coaxial probe between 0.3 and 6 GHz. International Journal of Food Properties, 21:1332-1343, 2018.

VIGANÓ, J. et al. Role of enthalpy and entropy in moisture sorption behavior of pineapple pulp powder produced by different drying methods. Thermochimica Acta, 528:63-71, 2012.

WEI, F.; TANOKURA, M. Chemical changes in the components of coffee beans during roasting-Chapter 10. Coffee in Health and Disease Prevention, p. 83-91, 2015.

YIN, X. et al. Comparative micro-structure and sorption isotherms of rice straw and wheat straw. Energy and Buildings, 173:11-18, 2018.

YOGENDRARAJAH, P. et al. Moisture sorption isotherms and thermodynamic properties of whole black peppercorns (Piper nigrum L.). LWT - Food Science and Technology, 64(1):177-188, 2015.

ZHANG, L.; SUN, D. W.; ZHANG, Z. Methods for measuring water activity (aw) of foods and its applications to moisture sorption isotherm studies. Critical Reviews in Food Science and Nutrition, 57(5):1052-1058, 2017.

Published

2020-09-04

How to Cite

COLLAZOS ESCOBAR, G. A.; GUZMAN, N. G.; VAQUIRO HERRERA, H. A.; AMOROCHO CRUZ, C. M. Moisture dynamic sorption isotherms and thermodynamic properties of parchment specialty coffee (Coffea arabica L.). Coffee Science - ISSN 1984-3909, v. 15, p. e151684, 4 Sep. 2020.