Mathematical modeling of dehydration resistance of pericarp tissues and endosperm in fruits of arabic coffee

Authors

  • Camila de Almeida Dias Universidade Federal de Lavras/UFLA, Departamento de Engenharia Agrícola/DEA http://orcid.org/0000-0001-8422-7867
  • Ednilton Tavares de Andrade Universidade Federal de Lavras/UFLA, Departamento de Engenharia Agrícola/DEA http://orcid.org/0000-0002-8448-8781
  • Isabella Ávila Lemos Universidade Federal de Lavras/UFLA, Departamento de Engenharia Agrícola/DEA
  • Flavio Meira Borém Universidade Federal de Lavras/UFLA, Departamento de Engenharia Agrícola/DEA http://orcid.org/0000-0002-6560-8792
  • Diogo Nogueira Westerich Universidade Federal de Lavras/UFLA, Departamento de Engenharia Agrícola/DEA
  • Ana Claudia Almeida da Silva Universidade Federal de Lavras/UFLA, Departamento de Engenharia Agrícola/DEA

DOI:

https://doi.org/10.25186/.v15i.1670

Keywords:

Drying, Coffea arabica L., mathematical model

Abstract

Coffee represents an important source of income for producers and for the Brazilian economy, being the second product in the country’s agricultural exports. Unlike other agricultural products, freshly harvested coffee has a high fruit water content, approximately 60% (dry base). It is fundamental to optimize the drying process for cost reduction and quality maintenance, making it necessary to understand the interdependence relation of the tissues of the pericarp and the coffee endosperm during the dehydration of the fruit. The objective of this work was to elaborate a drying model for the constituent parts of coffee fruits evaluating the resistance of each of the pericarp tissues and endosperm. The experiment was set up in a 4x6 factorial scheme (4 relative humidity of the drying air and natural, pulped natural coffee, pericarp tissues and endosperm: 1 - natural coffee and 2 – pulped natural coffee, 3 - exocarp + a portion of mesocarp, 4 - mesocarp, 5 - endocarp, 6 - endosperm]) in a completely randomized design with four replicates. The results were
analyzed through analysis of variance and regression, using the statistical software STATISTICA 5.0®. The resistance to water outflow, regardless of the processing or the fruit part of the coffee, is greater when the coffee is dried with the lowest relative humidity. The natural coffee was the treatment that presented greater resistance, while the lower resistance was presented by the exocarp + a portion of mesocarp.

References

BABBITT, J. D. On the diffusion of adsorbed gases through solids. Canadian Journal of Physics, 29:437-446, 1950.

BECKER, H. A.; SALLANS, H. R. A theoretical study of the mechanism of moisture diffusion in wheat. Cereal Chemistry, 34:395-409, 1957.

BORÉM, F. M.; GARCIA-SALVA, T. J.; SILVA, E. A. A. da. Anatomy and chemical composition of the coffee fruit and seed. In: BORÉM, F. M. (Ed.). Handbook of coffee post-harvest technology. Norcross: Gin, 2014a. p.1-10.

BORÉM, F. M.; ISQUIERDO, E. P.; TAVEIRA, J. H. S. Coffee processing. In: BORÉM, F. M. (Ed.). Handbook of coffee post-harvest technology. Norcross: Gin, 2014b. 49-68p.

BORÉM, F. M.; REINATO, C. H. R.; ANDRADE, E. T. Secagem do café. In: BORÉM, F. M. (Ed.). Pós-colheita do café. Lavras: Ed. UFLA, 2008. p.205-240.

COMPANHIA NACIONAL DE ABASTECIMENTO - CONAB. Acompanhamento da safra brasileira café, safra 2019. Available in: <http://www.conab.gov.br>. Access in: February, 20, 2019.

COSTA, L. M. et al. Coeficiente de difusão efetivo e modelagem matemática da secagem de sementes de crambe. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(10):1089-1096, 2011.

DIAS, C. A. et al. Sorption isotherms and isosteric heat of pericarp and endosperm tissues of arabica coffee fruit. Revista Brasileira de Engenharia Agrícola, 40(1):78- 89, 2020.

FORTES, M. et al. Modelagem de um condicionador de ar de alta precisão para uso em processamento agrícola. Engenharia Agrícola, 26(2):578-589, 2006.

MADAMBA, P. S.; DRISCOLL, R. H.; BUCKLE, K. A. Thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1):75-97, 1996.

MOHAPATRA, D.; RAO, P. S. A thin layer drying model of parboiled wheat. Journal of Food Engineering, 66(4):513-518, 2005.

OLIVEIRA, R. A.; OLIVEIRA, W. P.; PARK, K. J. Determinação da difusividade efetiva de raiz de chicória. Engenharia Agrícola, 26(1):181-189, 2006.

PABIS, S.; JAYAS, D. S.; CENKOWSKI, S. Grain drying: theory and pratice. New York: J. Wiley, 1998. 303p.

RESIO, C. A.; AGUERRE, R. J.; SUAREZ, C. The drying of amanthus grain: mathematical modeling and simulation.

Brazilian Journal of Chemical Engineering, 22(2):303-309, 2005.

SCHÄR, W.; RUËGG, M. The Evaluation of GAB Constants from Water Sorption Data. Lebensmittel-Wissenschaft

und-Technologie, 18:225-229, 1985.

SMITH, J. M.; VAN NESS, H. C.; ABBOTT, M. M. Introducción a la termodinámica en ingeniería

química. 5. ed. México: McGraw Hill, 1997. 616p.

STATSOFT. Statistica: data analysis software system. Version 5.0. 1995. Available in: <http://www.statsoft.

com>. Access in: June, 20, 2015.

TOCI, A. T. et al. Changes in triacylglycerols and free fatty acids composition during storage of roasted coffee.

LWT - Food Science and Technology, 50(2):581-590, 2013.

Published

2020-05-25

How to Cite

DIAS, C. DE A.; DE ANDRADE, E. T.; LEMOS, I. ÁVILA; BORÉM, F. M.; WESTERICH, D. N.; DA SILVA, A. C. A. Mathematical modeling of dehydration resistance of pericarp tissues and endosperm in fruits of arabic coffee. Coffee Science - ISSN 1984-3909, v. 15, p. e151670, 25 May 2020.