Rooting biostimulants for Coffea arabica L. cuttings
DOI:
https://doi.org/10.25186/.v15i.1635Keywords:
Root system. IBA. Humic acid. Fulvic acid. Shoots.Abstract
In the rooting process of Arabica coffee cuttings, plant hormones are used for inducing root formation. However, synthetic molecules cannot be used to form organic seedlings. The objective of this work was to evaluate the effect of nut grass extract and different concentrations and types of humic substances on Arabica coffee cuttings. Arabica coffee shoots were collected, and cuttings containing at least two buds were taken. The experiment had a three-factor design, 2 (without or with nut grass extract) x 2 (humic or fulvic acid) x 4 (0, 10, 25 and 50 mg.dm-³). The following vegetative data were evaluated: shoot height (cm), survival, remaining leaves, leaf pairs, vigor and number of shoots. The root length, area, volume, diameter, and fresh and dry mass were also evaluated. The enzyme activity of H+-ATPase, catalase, superoxide dismutase, alcohol dehydrogenase and esterase was also quantified. The results showed that the Arabica coffee cutting rooting rate was increased when treated with humic acid at a concentration of 10 mg.dm-³ in the presence of nut grass extract. The lowest oxidative stress was observed in the 10 mg.dm-³ humic and fulvic acid treatments, regardless of the use of the extract.
Key words: Root system; IBA; humic acid; fulvic acid; shoots.
References
ALFENAS, A. C. Eletroforese e marcadores bioquímicos em plantas e microrganismos, 2.ed. Viçosa: Ed. da UFV, 627p. 2006.
ANDRADE, H. M. Potencial alelopático de Cyperus rotundus L sobre espécies cultivadas. Ciência e Agrotecnologia 33(edição especial):1984-1990, 2009.
ANJUM S. A. Fulvic acid application improves the maize performance under well- watered and drought conditions. Journal of Agronomy and Crop Science 197(6):409-417, 2011.
AZEVEDO, I.G. et al. Humic acids and Herbaspirillum seropedicae change the extracellular H+ flux and gene expression in maize roots seedlings. Chemical and Biological Technologies in Agriculture, 6(8):1-10, 2019.
BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2):248-54, 1976.
CANELLAS, L. P. et al. Humic acids increase the maize seedlings exudation yield. Chemical and Biological Technologies in Agriculture, 6(3):1-14, 2019.
CANELLAS, L. P. et al. Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. Annals of Applied Biology, 159(2):202-211, 2011.
CANELLAS, N. O. A.; OLIVARES, F. L.; CANELLAS, L. P. Metabolite fingerprints of maize and sugarcane seedlings: searching for markers after inoculation with plant growthpromoting bacteria in humic acids. Chemical and
Biological Technologies in Agriculture, 6(14):1-10, 2019.
CARVALHO, M. et al. Comportamento em condições de campo de cafeeiros (Coffea arabica L.) propagados vegetativamente e por semeadura. Coffee Science, 3(2):108-114, 2008.
CASIMIRO, I. et al. Dissecting Arabidopsis lateral root development. Trends in Plant Science, 8(4):165-171, 2003.
CRUZ SILVA, C. T. A.; ALVES NETO, A. J.; VIECELLI, C. A. Extratos aquosos de tiririca sobre o enraizamento de cana-de-açúcar. Varia Scientia – Agrárias (Online), 2(1):49-61, 2011.
DIAS, J. R. M. et al. Enraizamento de estacas de cafeeiro imersas em extrato aquoso de tiririca. Coffee Science,
(3):259-266, 2012.
FAÇANHA, A. R. et al. Bioatividade de ácidos húmicos: Efeitos sobre o desenvolvimento radicular e sobre a bomba de prótons da membrana plasmática. Pesquisa Agropecuária Brasileira, 37(9):1301-1310, 2002.
FERREIRA, D. F. Sisvar: A guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia,
(2):109-112, 2014.
FERREIRA, G. et al. Enraizamento de estacas de atemoieira ‘gefner’ tratadas com auxinas. Revista Brasileira de Fruticultura, 30(4):1083-1088, 2008
GARCÍA A. C. et al. Potentialities of vermicompost humic acids to alleviate water stress in rice plants (Oryza sativa L.).
Journal of Geochemical Exploration, 136:48-54, 2014.
GEISS, G.; GUTIERREZ, L. E BELLINI, C. Adventitious root formation: New insights and perspectives. Annual Plant Reviews, 37:127-156, 2009.
GIANNOPOLITIS, C. N. et al. Superoxide dismutases. I. Occurrence in higher plants. Plant Physiology, 59:309-314, 1977.
HARTMANN, H. T. et al. Plant propagation: Principles and practices. Ed. 8, New Jersey: Prentice Hall 915p.
HAVIR, E. A.; MC HALE, N. A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84(2):450-455, 1987.
JINDO, K. et al. Root growth promotion by humic acids from composted and non-composted urban organic wastes.
Plant Soil, 353:209-220, 2012.
JORGE, L. A. C. de.; RODRIGUES, A. F. de O. Safira: Sistema de análise de fibras e raízes. Boletim de pesquisa
e desenvolvimento EMBRAPA. São Carlos, 2010, 20p.
JUSTI, M.; MORAIS, E. G.; SILVA, C. A. Fulvic acid in foliar spray is more effective than humic acid via soil in improving coffee seedlings growth. Archives of Agronomy and Soil Science, 65(14):1-15, 2019.
LORENZI, H. Plantas daninhas do Brasil: Terrestres, aquáticas, parasitas e tóxicas. 3. ed. Nova Odessa: Instituto Plantarum, 2000, 608p.
MORARD, P. et al. Direct effects ofhumic-like substance ongrowth, water, and mineral nutrition of various species.
Journal of Plant Nutricion, 34(1):46-59, 2011.
NARDI, S. et al. Biological activities of humic substances. In: SENESI, N.; XING, B.; HUANG, P. M. (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, p 305-339, 2009.
OLIVEIRA, D. H. et al. Influência do comprimento de estacas e ambientes, no crescimento de mudas cafeeiras obtidas por enraizamento. Coffee Science, 5(2):183-189, 2010.
OLIVEIRA, D. M. et al. Estaquia para propagação vegetativa do mofumbo. Revista Verde, 9(1):163-167, 2014.
PALMGREN, M. G. Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Annual review of plant
physiolgy and plant molecular biology, 52(6):817-845, 2001.
PEREIRA, F. A. C. et al. Selection of Coffea arabica L. hybrids using mixed models with different structures of
variance-covariance matrices. Coffee Science, 13(3):304-311, 2018.
PINTON, R. et al. Modulation of NO¯ 3 uptake by waterextractable humic substances: involvement of root plasma
membrane H+-ATPase. Plant and Soil, 215:155-161, 1999.
REZENDE, F. P. F.; ZUFFELLATO-RIBAS, K. C.; KOEHLER, H. S. Aplicação de extratos de folhas e tubérbulos de Cyperus rotundus L. e de auxinas sintéticas na estaquia caulinar de Duranta repens L. Revista Brasileira de Plantas Medicinais, 15(4):639-645, 2013.
REZENDE, T. T. et al. Propagação vegetativa do cafeeiro (Coffea arabica L.) por miniestacas. Coffee Science, 12(1):91-99, 2017.
RONCATTO, G. et al. Enraizamento de estacas de espécies de maracujazeiro (Passiflora spp.) no inverno e no verão. Revista Brasileira de Fruticultura, 30(4):1089-1093, 2008.
SOUZA, M. F. et al. Efeito do extrato de Cyperus rotundus na rizogênese. Revista de Ciências Agrárias, 35(1):157-162, 2012.
SUZUKI N. et al. ROS and redox signaling in the response of plants to abiotic stress. Plant, Cell & Environment, 35(2):259-270, 2012
TREVISAN, S. et al. Humic substances biological activity at the plant-soil interface. Plant Signaling & Behavior, 5(6):635-643, 2010.
VAN OVERBEEK, J. et al. An analysis of the function of the leaf in the process of root formation in cuttings. American Journal of Botany, 33(2):100-107, 1946.
Published
How to Cite
Issue
Section
Os direitos autorais dos artigos publicados nesta revista pertencem aos autores, com os primeiros direitos de publicação pertencentes à revista. Como os artigos aparecem nesta revista com acesso aberto, eles podem ser usados livremente, com as devidas atribuições, em aplicativos educacionais e não comerciais.