SPATIO-TEMPORAL VARIABILITY OF CARBOHYDRATE AND CHLOROPHYLL CONTENT IN THE COFFEE CANOPY
DOI:
https://doi.org/10.25186/cs.v14i3.1590Keywords:
Coffea arabica, sugars, plant pigments.Abstract
The spatial variability of the total chlorophyll content and carotenoids content, starch and soluble sugars of coffee canopy were mapped throughout the day. Therefore, evaluations were carried out in a ‘Catuaí Vermelho’ coffee plant with 1.7 meters height. A vertical gradient (from the apex to the base of the plant canopy) and a horizontal gradient (plagiotropic branches) were established to analyze different positions of the canopy. Thus, in the vertical direction, four heights were analyzed in the plant: top, upper, middle and lower regions. In the horizontal gradient, the plagiotropic branches were divided into three parts: basal, median and apical. Collection of leaf samples was performed on the east and west sides of the canopy, at 9 a.m., totaling 24 collection points at each time. Higher content of photosynthetic pigments and concentration of sugars were observed in the western face and in the inner parts of the coffee tree. The content of chloroplast pigments and sugars of an individual coffee leaf diverge considerably from other leaves, which requires caution when scaling estimates at the global canopy level. The analysis of some punctual leaves does not serve to discriminate the overall dynamics of a canopy.References
ALVES, E. A. Análise da variabilidade espacial da qualidade do café cereja produzido em região de montanha. M.Sc. Dissertation, Universidade Federal de Viçosa, Brazil, p. 43, 2005.
BALIZA, D. P. et al. Metabolismo da sacarose em cafeeiros submetidos a diferentes níveis de sombreamento. Coffee Science, Lavras, v. 9, n. 4, p.445-455, dez. 2014.
BATISTA, K. D. et al. Photosynthetic limitations in coffee plants are chiefly governed by diffusive factors. Trees, Viçosa, v. 26, n. 2, p.459-468, 23 ago. 2012.
BONFIM, J. C. et al. Fungos micorrízicos arbusculares (fma) e aspectos fisiológicos em cafeeiros cultivados em sistema agroflorestal e a pleno sol. Bragantia, Campinas, v.69, n.1, p.201-206, 2010.
CARVALHO, A. M. et al. Correlação entre crescimento e produtividade de cultivares de café em diferentes regiões de Minas Gerais, Brasil. Pesquisa Agropecuária Brasileira, Brasília, v.45, n.3, p.269-275, mar. 2010.
CHAVES, A. R. M. et al. Varying leaf-to-fruit ratios affect branch growth and dieback, with little to no effect on photosynthesis, carbohydrate or mineral pools, in different canopy positions of field-grown coffee trees. Environmental and Experimental Botany, Viçosa, v. 77, p.207-218, abr. 2012.
CINTRA, A. C. O. et al. Amostragem de plantas em cafeeiro para avaliação do estado nutricional. Coffee Science, Lavras, v. 10, n. 1, p. 122 - 130, jan./mar. 2015.
DaMATTA, F.M. Ecophysiological constraints on the production of shaded and unshaded coffee trees: a review. Field Crops Research, Amsterdam, v. 86, n. 2-3, p. 99–114, Mar. 2004.
DISCHE, Z. General color reactions: Methods in carbohydrate chemistry. Academic Press, New York, v. 1, n. 1, p.478-512, jan. 1962.
DURÁN, C. A. A. et al. Café: aspectos gerais e seu aproveitamento para além da bebida. Revista Virtual de Química. Rio de Janeiro, RJ. v. 9, n. 1, p. 107-134, Nov. 2016.
GUIMARÃES, P. T. G. et al. Cafeeiro. Recomendações para o uso de corretivos e fertilizantes em Minas Gerais. Viçosa, MG: CFSEMG, v. 1, p. 289-302, 1999.
INSTITUTO NACIONAL DE METEOROLOGIA – INMET (2015). Gráficos dos parâmetros diários da estação meteorológica de Lavras-MG em janeiro 2015. Disponível em: http://www.inmet.gov.br/sim/abre_graficos.php. Acesso em 21 de maio 2019.
KLUGE, R. A.; TEZOTTO-ULIANA, J. V.; SILVA, P. P. M. Aspectos Fisiológicos e Ambientais da Fotossíntese. Revista Virtual de Química, Piracicaba, v. 7, n. 1, p.56-73, nov. 2015.
LICHTENTHALER, H. K. et al. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade. Photosynthetica Res, Karlsruhe, v. 117, n. 1-3, p.355-366, 14 maio 2011.
MARTINS, L. D. et al. Combined effects of elevated [CO2] and high temperature on leaf mineral balance in Coffea spp. plants. Climatic Change, Viçosa, v. 126, n. 3-4, p.365-379, 23 ago. 2014.
MILLER, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, Natick, v. 31, n. 3, p.426-428, mar. 1959.
PELOSO, A. F. et al. Limitações fotossintéticas em folhas de cafeeiro arábica promovidas pelo déficit hídríco. Coffee Science, Lavras, v. 12, n. 3, p. 389 - 399, jul./set. 2017.
POMPELLI, M. F. et al. Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. Journal of Plant Physiology, v. 167, n 13, p. 1052-1060, 2010.
RAIJ, B. Fertilidade do solo e manejo de nutrientes. Piracicaba: International Plant Nutrition Institute, 420 p., 2011.
RODRÍGUEZ, D. et al. A coffee agroecosystem model: I. Growth and development of the coffee plant. Ecological Modelling, Bogotá, v. 222, n. 19, p.3626-3639, out. 2011.
SANTINI, P. T. Spatial-temporal patterns of coffee tree physiology. Coffee Science, Lavras, v. 14, n. 3, 2019 (Article in press)
SURFER, Golden Software. Countoring and 3D surface mapping for scientists engineers, users guide. Golden Software, New York, v. 1, n. 1, p.462-483, jan. 2004.
ZANANDREA, I. et al. Tolerance of Sesbania virgata plants to flooding. Australian Journal of Botany, Collingwood, v. 57, n. 8, p. 661-669. Mar. 2010.
Published
How to Cite
Issue
Section
Os direitos autorais dos artigos publicados nesta revista pertencem aos autores, com os primeiros direitos de publicação pertencentes à revista. Como os artigos aparecem nesta revista com acesso aberto, eles podem ser usados livremente, com as devidas atribuições, em aplicativos educacionais e não comerciais.