SIMULATION OF COFFEE FRUIT DRYING USING COMPUTATIONAL FLUID DYNAMICS

Authors

  • Rudney Amaral Universidade Federal de Lavras http://orcid.org/0000-0003-1802-4556
  • Ednilton Tavares Andrade Universidade Federal de Lavras
  • Francisco Carlos Gomes Universidade Federal de Lavras
  • Flávio Meira Borém Universidade Federal de Lavras
  • Isabella Lemos Universidade Federal de Lavras
  • Camila Almeida Dias Universidade Federal de Lavras

DOI:

https://doi.org/10.25186/cs.v13i4.1489

Keywords:

Café natural, Umidade, Difusão

Abstract

Drying is a fundamental step in post-harvest handling of coffee because moisture content at the end of drying affects several important aspects, such as sensory quality, storability, and color. Within this context, the aim of this study is to determine water distribution within the natural coffee fruit during and at the end of the drying process. For that purpose, simulations were made through finite elements using computational fluid dynamics. Experimental data on moisture content of coffee fruitin the “cherry” stage were collected during drying, which was carried out at a temperature of 40°C and relative humidity of 25% to 0.18 decimal(dry basis – d.b.)to compare the results of the experiment with the results of the simulations. Ten mathematical models of the drying process were developed for the collected data. The two-term exponential model best fit the data. The results of the simulations in computational fluid dynamics were compared to the results from experimental drying, and a satisfactory fit was obtained. The effective diffusivity coefficient (Deff) was developed for the model, obtaining the value of 2.87 x 10‑11 m2 s-1. At the end of drying, the model exhibited 57.1% of the projection area of the coffee fruit with moisture content below 0.18 decimal (d.b.). Thus, the model can be used for other applications.

References

AFONSO JUNIOR, P. C. Aspectos físicos, fisiológicos e de qualidade do café em função da secagem e do armazenamento. 2001. Tese (Doutorado em Engenharia Agrícola) – Universidade Federal de Viçosa, Viçosa, 2001.

ALVES, G. E.; ISQUIERDO, E. P.; BORÉM, F.M.; SIQUEIRA, V. C.; OLIVEIRA, P. D.; ANDRADE, E. T. Cinética de secagem de café natural para diferentes temperaturas e baixa umidade relativa. CoffeeScience, Lavras, v.8, n.2, p.238-247, abr./jun. 2013

ANSYS 11: Manual Ansys. Ontario, 2008. Software.

BERGMAN T. L.; LAVINE A. S.; INCROPERA F. P.; DEWITT D.P. Fundamentals of heat and mass transfer. New Jersey: John Wiley & Sons, p. 625, 2011

BORÉM, F. M. Pós-colheita do café. Lavras : Ed. Ufla. 2008

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para Análise de Sementes. Brasília, 2009. 399p.

Brooker, D.B.; Bakker-Arkema, F.W.; Hall.C.W. Drying and storage of grains and oilseeds. New York: Van NostrandReinold, 1992. 450p.

BURMESTER, K; EGGERS, R. Heat and mass transfer during the coffee drying process.Journal off Food Engeneering, Essex, v. 99, n 4, p. 430-436, Aug. 2010.

CORRÊA, P.C.; MACHADO, P.F.; ANDRADE, E.T. Cinética de secagem e qualidade de grãos de milho-pipoca. Ciência e Agrotecnologia.Lavras, v.25, n.1, p.134-142, 2001.

CRANK, J.The mathematics of diffusion. Oxford. Clarendon Press. 1975.

FILHO, L. C. C.; ANDRADE, E. T.; MARTINAZZO, A. P.; D’ANDREA, M. E.;

SOUSA, F. A.; FIGUEIRA, V. G. Cinética de secagem, contração volumétrica e análise da difusão líquida do figo (Ficus carica L). R. Bras. Eng. Agríc. Ambiental, v.19, n.8, p.797–802, 2015.

FORTES, M et al. Modelagem de um condicionador de ar de alta precisão para uso em processamento agrícola. Engenharia Agrícola, Jaboticabal, v.26, n.2, p. 578-589, maio/agosto 2006.

INFORME ESTATÍSTICO DO CAFÉ. Outubro 2016. Available at: <http://www.consorciopesquisacafe.com.br/index.php/imprensa/noticias/420-aprespdfviiispcb#A>. Accessed on 01 Dec. 2016.

ISQUIERDO, E. P.; BORÉM, F. M.; ANDRADE, E. T. ; CORRÊA, J. L. G. ; OLIVEIRA, P. D. ; ALVES, G. E. Drying Kinetics and quality of natural coffee. American Society of Agricultural and Biological Engineers. Transactions, V. 56, P. 1003-1010, 2013.

MADAMBA, P.S.; DRISCOLL, R.H.; BUCKLE, K.A. Thin layer drying characteristics of garlic slices. Journal of Food Engineering, v. 29, p. 75 – 97, 1996.

MOHAPATRA, D.; RAO, P.S.A thin layer drying model of parboiled wheat.Journal of Food Engineering, London, v.66, n.4, p.513-18, 2005.

NILNONT, W ET AL. Finite element simulation for coffee (Coffeaarabica) drying. Food and bioproducts processing 90 (2012) 341–350

RESENDE, O. et al. Modelagem matemática para a secagem de clones de café (Coffea canephora Pierre) em terreiro de concreto. Acta Scientiarum. Agronomy, Maringá, v. 31, n. 2, p. 189-196, 2009.

SAATH, R.; BORÉM, F. M.; ALVES, E.; TAVEIRA, J. H. DA S.; MEDICE, R.; CORADI, P. C. Microscopia eletrônica de varredura do endosperma de café (Coffea arábica L.) durante o processo de secagem. Ciência e Agrotecnologia, LAVRAS, V. 34, N. 1, P. 196-203, JAN./FEV., 2010

SCHNEIDER,F. A.; MALISKA,C. R.. Uma formulação em volumes finitos usando malhas não-estruturadas. VIII ENCIT – Encontro Nacional de Ciências Térmicas, CD Romedition,2000.<http://www.sinmec.ufsc.br/sinmec/site/iframe/pubicacoes/artigos/novos_00s/2000_unstructured_and_hybrid_grids.pdf>.

SILVA, J. A.; GOMES, F. C.; CORREA, J. L. G.; MAGALHÃES, L. Analysis of effects of grain dust explosion using computational fluid dynamics. American Society of Agricultural and Biological Engineers, 2012 Dallas, Texas, July 29 - August 1, 2012 121341005.(doi:10.13031/2013.42033)

SILVA, J. A.; GOMES, F. C.; CORREA, J. L. G. Analysis of the pressure effects in corn dust explosion using computational fluid dynamics. In: International Conference of Agricultural Engineering, 2012, Valência. International Conference of Agricultural Engineering 2012.

Published

2018-12-19

How to Cite

AMARAL, R.; ANDRADE, E. T.; GOMES, F. C.; BORÉM, F. M.; LEMOS, I.; DIAS, C. A. SIMULATION OF COFFEE FRUIT DRYING USING COMPUTATIONAL FLUID DYNAMICS. Coffee Science - ISSN 1984-3909, v. 13, n. 4, p. 477 - 488, 19 Dec. 2018.

Issue

Section

Articles