Particle size and roasting on water sorption in conilon coffee during storage
DOI:
https://doi.org/10.25186/cs.v11i2.1061Keywords:
Adsorption isotherms, mathematical modeling, thermodynamic properties, Coffea canephoraAbstract
The aim of this work was to evaluate alterations on the water sorption of coffee due to the effect of roast, grind and storage in two temperatures (10 and 30 ºC) during 180 days. Crude grain coffee (Coffea canephora) with average initial moisture content of 12.61 % (d.b.) was used. Grain was roasted at two levels: medium light (ML) and moderately dark (MD). Afterwards, grain was processed in three different particle sizes: fine (0.59 mm), medium (0.84 mm) and coarse (1.19 mm), besides the whole coffee lot. Samples prepared were then stored in two temperatures (10 and 30 ºC). These were analyzed during six months, at five distinct times (0, 30, 60, 120 and 180 days) regarding moisture content and water activity. Furthermore, mathematical modeling and thermodynamic properties acquisition of the coffee moisture adsorption process were accomplished. A split plot design was used, in which plots consisted of storage period and split-plots consisted of a 2 x 4 x 2 factorial (two roasting degrees, four particle sizes and two storage temperatures), with five repetitions.It was concluded thatparticle size did not significantly affectedmoisture content of coffee, independently of roast degree; Sigma-Copace model best represented hygroscopic equilibrium for sorption of roasted coffee; with moisture content reduction, an increase of differential enthalpy and entropy of sorption and Gibbs free energy occurs.References
AL-MUHTASEB, A. H.; MCMINN, W. A. M.; MAGEE, T. R. A. Water sorption isotherms of starch powders. Part 2: Thermodynamic characteristics. Journal of Food Enginerring, v. 62, p. 135-142, 2004. DOI: 10.1016/S0260-8774(03)00202-4.
ANDUEZA, S.; DE PEÑA, M. P.; CID, C. Chemical and sensorial characteristics of espresso coffee as affected by grinding and torrefacto roast. Journal of Agricultural and Food Chemistry, v. 51, p. 7034-7039, 2003. DOI: 10.1021/jf034628f.
ANESE, M.; MANZOCCO, L.; NICOLI, M. C. Modeling the secondary shelf life of ground roasted coffee. Journal of Agricultural and Food Chemistry, v. 54, p. 5571-5576, 2006. DOI: 10.1021/jf060204k.
BAPTESTINI, F. M. Efeito da granulometria e da embalagem na sorção de água pelo café torrado e moído. 95 p. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal de Viçosa, Viçosa, 2011.
BICHO, N. C. et al. Use of colour parameters for roasted coffee assessment. Ciência e Tecnologia de Alimentos, v. 32, n. 3, p. 436-442, 2011. DOI: 10.1590/S0101-20612012005000068.
BRUNAUER, S. The Adsorption of Gases and Vapors. Princeton, NJ: Princeton University Press, 1945.
CORRÊA, P. C.; AFONSO JÚNIOR, P. C.; STRINGHETA, P. C. Estudo do fenômeno de adsorção de água e seleção de modelos matemáticos para representar a higroscopicidade do café solúvel. Revista Brasileira de Produtos Agroindustriais, v. 2, n. 1, p.19-25, 2000.
CORRÊA, P. C. et al. Isotermas de sorção de água de frutos de Coffea canephora. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, n. 10, p. 1047–1052, 2014.
CORRÊA, P. C.; OLIVEIRA, G. H. H.; SANTOS, E. S. Thermodynamic properties of agricultural products processes. In: ARANA, I. (Ed.). Physical properties of foods: Novel measurement techniques and applications. Boca Raton: CRC Press, 2012. p. 131-141.
FURMANIAK, S. et al. Searching the most optimal model of water sorption on foodstuffs in the whole range of relative humidity. Food Research International, v. 42, n. 8, p. 1203–1214, 2009.
HASSINI, L.; et al. Desorption isotherms and thermodynamic properties of prickly pear seeds. Industrial Crops and Products, v. 67, p. 457–465, 2015.
HENAO, J. D.; QUEIROZ, M. R.; HAJ-ISA, N. M. A. Umidade de equilíbrio de café cereja descascado baseada em métodos estático e dinâmico. Revista Brasileira de
Engenharia Agrícola e Ambiental, v. 13, n. 4, p. 470–476, 2009.
IACCHERI, E. et al. Different analytical approaches for the study of water features in green and roasted coffee beans. Journal of Food Engineering, v. 146, p. 28–35, 2015.
RAMÍREZ-MARTÍNEZA, A. et al. Water transport in parchment and endosperm of coffee bean. Journal of Food Engineering, v. 114, n. 3, p. 375–383, 2013.
RIZVI, S. S. H. Thermodynamic Properties of Foods in Dehydration. In: RAO, M. A.; RIZVI, S. S. H.; DATTA, A. K. (Ed.). Engineering Properties of Foods. New York: CRC Press, 2005. p. 239-326.
ROBERTSON, G. L. Packaging of beverages. In: Food packaging: principles and practice. New York: Marcel Dekker, 1993. p. 588-621.
SAMAPUNDO, S. et al. Sorption isotherms and isosteric heats of sorption of whole yellow dent corn. Journal of Food Engineering, v. 79, n. 1, p. 168-175. 2007. DOI: 10.1016/j.jfoodeng.2006.01.040.
SCHMIDT, C. A. P.; MIGLIORANZA, E.; PRUDÊNCIO, S. H. Interação da torra e moagem do café na preferência do consumidor do oeste paranaense. Ciência Rural, v. 38, n. 4, p. 1111-1117, 2008.
VARGAS-ELÍAS, G. A. Avaliação das propriedades físicas e qualidade do café em diferentes condições de torrefação. 111 p. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal de Viçosa, Viçosa, 2011.
VIGANÓ, J. et al. Role of enthalpy and entropy in moisture sorption behavior of pineapple pulp powder produced by different drying methods. Thermochimica Acta, v. 528, p. 63–71, 2012. DOI: 10.1016/j.tca.2011.11.011.
Published
How to Cite
Issue
Section
Os direitos autorais dos artigos publicados nesta revista pertencem aos autores, com os primeiros direitos de publicação pertencentes à revista. Como os artigos aparecem nesta revista com acesso aberto, eles podem ser usados livremente, com as devidas atribuições, em aplicativos educacionais e não comerciais.